Статья: ИСПОЛЬЗОВАНИЕ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ ДЛЯ ВЫПОЛНЕНИЯ СЕГМЕНТАЦИИ РЕНТГЕНОГРАММ ТАЗОБЕДРЕННОГО СУСТАВА ПРИ ЛЕЧЕНИИ ОСТЕОАРТРИТА
Процедура рентгенологического анализа в настоящее время позволяет выявить остеоартрит (ОА) на ранних стадиях заболевания. Наличие или отсутствие заболевания выявляется только на той стадии, когда оно уже проявилось и проведена рентгенологическая диагностика. Использование автоматизированных процедур анализа рентгенологических снимков, наличие архивов такой информации с длительной историей позволяют улучшить результаты прогнозирования осложнений у пациентов. В статье описывается опыт разработки приложения компьютерного анализа рентгенограмм, которое на основе методов глубокого обучения позволяет выявлять риски развития остеоартрита тазобедренного сустава. В качестве обучающей выборки используется архив профильного медицинского института. С целью увеличения размера обучающего набора рентгенограмм используется метод аугментации данных, который повышает вариативность исходных данных, в ряде случаев повышает эффективность распознавания. В работе используется конволюционная сеть (U-сеть), предназначенная для сегментации изображений, которая обучается на рентгенограммах конкретного медицинского учреждения. В рамках проекта по сегментации и анализу геометрических характеристик рентгеновских снимков тазобедренных суставов было разработано программное обеспечение, позволяющее автоматизировать распознавание размера суставной щели, что позволяет уточнить диагноз пациента, прогноз развития патологии.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 3
Информация о статье
- EISSN
- 2310-6018
- Журнал
- МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
- Год публикации
- 2024