Архив статей журнала
Развитие интереса к хромистым нержавеющим сталям вызвано необходимостью создания материалов, демонстрирующих оптимальное сочетание физико-механических и химических свойств при эксплуатации в агрессивных средах. В настоящее время для производства промышленных трубных изделий, эксплуатирующихся под нагрузкой при повышенных температурах, перспективными представляются нержавеющие стали феррито-мартенситного и мартенситного классов, упрочненные за счет дополнительного легирования. Достижение заданного комплекса свойств в сталях и сплавах определяется однородностью химического и фазового составов, микроструктурой и кристаллографической текстурой. Формирование указанных параметров для материалов, прошедших термическую обработку, главным образом определяется характеристиками зерна аустенита, формирующегося при нагреве материала перед закалкой. Размер и форма зерен аустенита определяют морфологию и дисперсность продуктов фазового γ→α′(α)-превращения. С использованием методов ориентационной микроскопии, основанных на дифракции обратно рассеянных электронов, рассмотрена возможность восстановления высокотемпературного аустенитного зерна для образцов низкоуглеродистой высоколегированной нержавеющей стали феррито-мартенситного класса c ~12 масс. % Cr, дополнительно легированной Ni, Mo, W, Nb, V, характеризующихся после термической обработки феррито-мартенситной и феррито-бейнитной структурой. При восстановлении аустенитного зерна были использованы ориентационные соотношения (ОС) Курдюмова – Закса (К–З), Нишиямы – Вассермана (Н–В), Гренингера – Трояна (Г–Т) и новые ОС, предложенные Крапошиным В. С. (ОСК). Показана принципиальная возможность восстановления ранее существовавшего аустенитного зерна по кристаллографическим особенностям как феррито-мартенситной, так и феррито-бейнитной структуры. Наиболее достоверные результаты при восстановлении зерна аустенита были получены при использовании ОС К–З и ОСК.
Методами просвечивающей электронной микроскопии, дифракции обратно рассеянных электронов и рентгеноструктурного анализа прослежена эволюция микроструктуры стали 38Г2Ф и проведена количественная оценка компонент упрочнения и их относи-тельного вклада в предел текучести данной стали после закалки и отпуска при 650 °C. Разупрочнение стали при увеличении продолжительности изотермического отпуска отп от 2 до 3000 минут происходит в две стадии: интенсивный темп падения прочностных свойств /отп ~ 100 МПа/мин на I стадии (отп ≤ 8 мин) сменяется слабым разупрочнением /отп ~ 0,1 МПа/мин на II стадии (отп ≥ 64 мин). Показано, что основной вклад (q ~ 80 %) в предел текучести стали 38Г2Ф на I стадии отпуска мартенсита вносит совокупное действие дислокационного и зернограничного (за счет границ реек) механизмов упрочнения, а на II стадии отпуска – субзеренное упрочнение.
Исследованы структура и механические свойства сталей 09Г2С и 38Г2Ф после закал-ки и отпуска с различным временем изотермической выдержки в температурном интервале 250–650 °C. Показано, что для изученных в работе сталей на кривых изменения твердости в зависимости от изотермической выдержки при разных температурах можно выделить три стадии. С помощью дюрометрического метода определены режимы отпуска, приводящие к сопоставимому уровню твердости. Для исследуемых сталей определена константа C в уравнении Холломона – Яффе для расчета параметра отпуска.