Архив статей журнала

ЦИФРОВОЙ СЛЕД КАК ИСТОЧНИК БОЛЬШИХ ДАННЫХ (BIG DATA) В ОБРАЗОВАНИИ (2024)
Выпуск: Т. 28 № 6 (2024)
Авторы: Шамсутдинова Татьяна Михайловна

Цель данного исследования - рассмотреть перспективы и проблемы применения больших данных в образовании. Материалы и методы. Методами исследования выступали анализ, систематизация и структурирование информации в области применения больших данных в образовании, а также моделирование и программная реализация тестовой модели обработки больших данных с использованием фреймворка Apache Spark. Результаты. В статье рассмотрены ключевые аспекты использования больших данных в образовании, в частности, их источники в виде цифрового следа обучения, методы анализа и направления применения больших данных. При этом были выделены следующие источники больших данных в образовании: электронная образовательная среда и электронная библиотека вуза; мобильные приложения для обучения; сайт вуза; социальные сети и форумы; данные обратной связи, обращений и опросов; персональные данные, включая психометрические характеристики обучающихся; данные научных smart лабораторий; данные видеонаблюдений и систем контроля управления доступом; данные о карьерном пути и успешности выпускников. Направления применения больших данных в образовании включают в себя следующие моменты: персонализация электронного обучения, выдача персонализированных рекомендаций; аналитика данных; оценка и обратная связь; прогнозирование успеха студентов; мониторинг качества образования; создание модели обучаемого; разработка учебных планов на основе запросов работодателей; разработка новых образовательных программ; появление новых моделей обучения; совершенствование процессов управления вузом; совершенствование работы приемной компании; модернизация программно-технических средств обучения; оптимизация педагогического состава. В качестве проблем применения больших данных в образовании рассматриваются проблемы защиты личных (персональных) данных, необходимость в новых методологиях и технологиях анализа больших данных, потребность в существенной модернизации имеющихся в системе образования технических средств, необходимость в квалифицированных кадрах. В статье также приведен тестовый пример анализа log-файла (журнала событий) электронного курса с помощью технологий обработки больших данных Spark SQL, показывающий потенциальную возможность и практическую применимость технологий обработки больших данных к задачам анализа цифрового следа обучения. Заключение. Большие данные в образовании способны предоставить уникальные возможности для анализа и оптимизации учебного процесса, помогая выявить тенденции, прогнозировать успехи студентов и адаптировать образовательные программы к индивидуальным потребностям учащихся. Но нельзя также забывать, что использование больших данных в сфере образования также несет с собой определенные риски и вызовы, связанные с этическими аспектами, защитой личных данных и необходимостью кадровой модернизации сложившейся системы образования. Для успешной интеграции аналитики данных в образовательную практику необходимо развивать не только технические ресурсы, но и уровень цифровой безопасности и этики в использовании персональных данных.

Сохранить в закладках
ИСПОЛЬЗОВАНИЕ НЕЙРОННОЙ СЕТИ ДЛЯ ГЕНЕРИРОВАНИЯ ИЗОБРАЖЕНИЙ ПРИ ОБУЧЕНИИ СТУДЕНТОВ РАЗРАБОТКЕ АЛЬТЕРНАТИВНОГО ТЕКСТА (2024)
Выпуск: Т. 28 № 1 (2024)
Авторы: Косова Екатерина Алексеевна, Редкокош Кирилл Игоревич, Михеев Павел Олегович

Цель исследования: разработать и проверить подход к обучению составителей цифрового контента в части создания альтернативного текста, точно описывающего оригинальное изображение, с использованием нейронной сети для генерирования контрольных изображений, реконструируемых по тексту. Отсутствие в веб-ресурсе текстовых описаний к визуальному контенту ограничивает цифровую доступность, особенно для пользователей с нарушением зрения. Для обеспечения доступности каждое информативное изображение должно сопровождаться альтернативным текстом. Известно, что текстовые альтернативы, сгенерированные с помощью автоматических инструментов, уступают по качеству описаниям, выполненным человеком. Следовательно, составитель цифрового контента должен уметь разрабатывать альтернативный текст к изображениям. Выдвинуто предположение, что нейронная сеть, способная генерировать изображения по текстовым описаниям, может выступать в роли инструмента, служащего для проверки релевантности составляемых текстовых альтернатив. Материалы и методы. Исследование выполнялось в апреле-мае 2023 года. 17 обучающихся бакалавриата изучили требования к разработке текстовых альтернатив, выполнили первичные текстовые описания к трем предложенным фотографиям, а затем откорректировали текст с использованием нейронной сети Kandinsky 2.1 согласно алгоритму: генерирование изображения по описанию; визуальное сравнение полученного изображения с оригиналом; возвращение к редактированию описания или завершение процесса. По первичным и итоговым описаниям исследователи воссоздали изображения с использованием той же нейронной сети. Дальнейшая работа заключалась в оценке качества всех текстовых описаний и сходства всех сгенерированных изображений с оригинальными. Результаты исследования (текстовые описания; оценки, выставленные экспертами; ссылки на сгенерированные изображения) опубликованы в виде набора данных в репозитории Mendeley Data. Для анализа данных использовали t-тест, корреляцию Пирсона и многомерную регрессию (при заданном уровне значимости p = 0,05). Результаты. Установлено, что средние оценки качества первичных и итоговых текстовых описаний значимо не отличались (p > 0,05), также не было выявлено значимых отличий для длины текста (p > 0,05). При этом существенно (p < 0,05) возрастало сходство сгенерированных изображений с оригинальными фотографиями после использования обучающимися нейронной сети. Следовательно, тренировка в нейронной сети способствовала повышению качества (сходства с оригиналом) изображений, сгенерированных по измененным текстовым описаниям, без потери качества описаний. Обнаружено также, что качество итоговых текстовых альтернатив тем выше, чем больше их размер в пределах отведенного лимита, чем лучше и короче первичные описания (p < 0,05). Таким образом, лаконичные и точные альтернативные описания к изображениям после тренировки обучающихся в нейронной сети могут быть преобразованы в не менее качественные текстовые альтернативы, релевантность которых повышается за счет добавления в описание деталей сюжета. Заключение. Нейронные сети для генерирования изображений могут быть применимы в качестве программного инструмента, стимулирующего потенциальных авторов контента к созданию более точного и полного альтернативного текста при сохранении его лаконичности. Представляется важным продолжить исследования, распространив их на изображения других типов, с использованием различных нейронный сетей.

Сохранить в закладках