Задача рациональной организации вспомогательных процессов на предприятии заключается в снижении их себестоимости путем более глубокой интеграции в основной производственный процесс. Цель статьи заключается в разработке алгоритма классификационного анализа для оценки зависимостей между основными и вспомогательными подразделениями и типологии производственных процессов по уровню внутризаводского кооперирования. В качестве метода определения типа производства предложен метод машинного обучения «Случайный лес» с использованием метаалгоритма обучения машин Бэггинга. Разработаны параметры, описывающие затраты на вспомогательные операции, расходы на ремонтное хозяйство и обслуживание оборудования, уровень технической эффективности производства. Апробация алгоритма на примере химических предприятий позволила выделить три типа производств по характеру внутризаводской кооперации процессов по наиболее информативным параметрам. Для оценки полезности и производительности моделей построены диаграммы кумулятивного подъема, где наиболее продуктивным определен тип со средним уровнем внутризаводского кооперирования. Результаты являются первичной диагностикой организации вспомогательного хозяйства, принятия решений о проведении реинжиниринга процессов с целью усиления внутризаводского кооперирования и снижения уровня затрат.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.