Исследуется нелокальная двухточечная краевая задача для импульсных систем обыкновенных дифференциальных уравнений первого порядка с нелинейными условиями, включающими производные от неизвестной вектор-функции. Система дифференциальных уравнений содержит произведение двух нелинейных вектор-функций, для каждой из них выполняется условие Липшица. Доказываются существование, единственность и непрерывная зависимость решения по заданным функциям. Задача сводится к системе нелинейных функционально-интегральных уравнений в банаховом пространстве PC([0, T ], Rn). Метод последовательных приближений в комбинации с методом сжимающих отображений применён в доказательстве существования и единственности решения нелинейных систем функционально-интегральных уравнений.