Архив статей

МОДЕЛИ И МЕТОДЫ ГЛУБОКОГО ОБУЧЕНИЯ В ЗАДАЧАХ РАСПОЗНАВАНИЯ И КЛАССИФИКАЦИИ МЕДИЦИНСКИХ ИЗОБРАЖЕНИЙ (2025)
Выпуск: Том 27 № 2 (2025)
Авторы: Пшенокова Инна Ауесовна, Киясов Мурат Русланович

В работе проведены исследование и анализ моделей и методов глубокого обучения в задачах распознавания и классификации изображений опухолей мозга. Для сравнения эффективности наиболее актуальных и доступных моделей на основе сверточных нейронных сетей были выбраны модели VGG19, Xception и ResNet152. Наилучшие результаты показала модель Xception. Целью данной работы являются оптимизация и обучение выбранной модели с помощью различных методов для повышения точности диагностики опухолей головного мозга человека. Предложена и реализована стратегия для улучшения этой модели с использованием методов переноса обучения и аугментации данных. Из проведенных тестов следует, что улучшенная модель демонстрирует более высокую точность и устойчивость к различным видам искажений данных, что делает ее более эффективной для задач распознавания и классификации изображений.

Сохранить в закладках