Цель. Оценить перспективность применения нейронных сетей для цефалометрического анализа при помощи анализа точности ручной иидентификации анатомических ориентиров на цифровых латеральных телерентгенограммах.
Материалы и методы. Выполнена разметка 100 обезличенных телерентгенограмм в боковой проекции одиннадцатью врачами- ортодонтами по 21 параметру, получено 23100 цифровых рентгеновских изображения с нанесенной на них опорной точкой. Проведено сравнение координат опорной точки с «базовой точкой», то есть усредненной координатой для каждой опорной точки среди всех ее локализаций.
Результаты. По критерию среднего отклонения от «базовой точки» наилучшая точность достигнута для вершин режущих краев центральных резцов верхней (is) (0,589, ДИ = 95%) и нижней челюстей (ii) (0,835, ДИ = 95%), а также для середины входа в турецкое седло (S) (0,662, ДИ = 95%).
Для группы ориентиров с наименьшей согласованностью, куда вошли такие точки как Po (4,330, ДИ = 95%), Pt (2,999, ДИ = 95%) и Ba (2,887, ДИ = 95%), для автоматизации идентификаций и повышения качества цефалометрического анализа, вероятно, будет недостаточным применение только искусственных нейронных сетей и потребуется внедрение других элементов машинного обучения.
Заключение. Учитывая результаты нашего исследования, можно сделать вывод, что предложенный метод демонстрирует высокую точность для большинства точек и может быть использован для автоматизации цефалометрического анализа с дальнейшим развитием технологий машинного обучения.
Цель: настоящее исследование направлено на разработку клинической классификации программного обеспечения (ПО) на основе искусственного интеллекта (ИИ) в области лучевой диагностики.
Материалы и методы: для проведения исследования был проведён всесторонний анализ доступной информации о ПО на основе ИИ в сфере лучевой диагностики с использованием отечественных и зарубежных баз данных. В процессе анализа были выявлены ключевые аспекты, включая клиническую применимость ПО на основе ИИ, диагностическую точность медицинских изделий с использованием ИИ в лучевой диагностике.
Результаты: была разработана клиническая классификация ПО на основе ИИ в области лучевой диагностики. Кроме того, было выявлено важное замечание относительно представления метрик диагностической точности ПО на основе ИИ. В результате этого предложенная классификация была расширена и дополнена определением уровня представления метрик диагностической точности в зависимости от клинической классификации.
Заключение: на основе проведенного исследования разработана клиническая классификация ПО на основе ИИ, что обеспечивает единый подход к представлению данных о диагностической точности со стороны разработчиков. Данный подход позволяет повысить прозрачность и сравнимость информации о различных ПО на основе ИИ в медицинской практике, что способствует повышению эффективности и безопасности использования ПО на основе ИИ в медицинской практике. Результаты настоящего исследования имеют потенциал для масштабирования на другие области применения ИИ и могут быть использованы для совершенствования системы регулирования качества медицинских изделий с применением ИИ.
В настоящее время искусственный интеллект является одной из наиболее быстро развивающихся областей человеческого знания. Данная тематика имеет большое значение для науки и практики, в целом, и для медицины, в частности. Применение технологий искусственного интеллекта к сегментации зон головного мозга и выявлению аномальных участков особенно востребовано и перспективно в области нейрофизиологии, нейрохирургии, психиатрии, клинической психологии и других медицинских дисциплин. В данной работе проведено исследование существующих методов автоматизированной сегментации и анализа данных о структуре и функциональном состоянии головного мозга, а также метрик, применяемых для оценки эффективности данного подхода.
Цель: выявление нерешённых проблем и поиск тенденций в разработке методов сегментации и выявления аномальных участков головного мозга, а также определение наиболее эффективных методов и способов их улучшения.
Материалы и методы. Работа выполнена с использованием методологии Systematic Mapping Study (SMS). Данное исследование ограничивается предметной областью, связанной с сегментацией зон головного мозга и определением в нём аномальных участков.
Результаты. Основные результаты исследования представлены в виде классификационных таблиц и ментальной карты. Показано, что целью рассмотренных исследований является повышение точности при сегментировании зон головного мозга и нахождении аномальных участков. Такая метрика, как время обработки данных, применяется для оценки эффективности метода при малом количестве исследований, а в большинстве случаев вообще не рассматривается. При этом скорость обработки изображений в зависимости от применяемого метода измеряется минутами, что существенно ограничивает возможность использования данного подхода в экстренных ситуациях, в том числе при угрозе жизни человека.
Заключение. Для анализа данных о структуре и функциональном состоянии головного мозга в режиме реального времени требуется модификация уже разработанных методов энцефальной сегментации, а также разработка новых, более эффективных подходов. При этом скорость обработки данных должна быть соизмерима со временем вынесения срочного заключения о состоянии головного мозга человека.
Использование квантовых технологий открывает новые возможности для разработки лекарственных средств, улучшения качества диагностики, защиты медицинской информации и персональных данных, повышения эффективности принятия врачебных решений. Целью исследования являлось изучение перспектив развития и применения квантовых технологий в сфере здравоохранения. Для достижения цели выполнен анализ отдельных кластеров квантовых технологий, имеющих максимальные перспективы коммерческого применения в здравоохранении; построен патентный ландшафт рассматриваемой технологической области; подготовлен обзор созданных на основе квантовых технологий рыночных продуктов для здравоохранения. Показано, что максимальное развитие в сфере здравоохранения получили квантовые сенсоры, квантовые вычисления и квантово-устойчивые решения кибербезопасности. Количество созданных технических решений в рассматриваемой технологической области, получивших патентную охрану, составляет более 6,5 тысяч, из которых 3,5 тысячи поддерживаются.
В качестве ключевых бенефициаров использования квантовых технологий в здравоохранении предлагается рассматривать, прежде всего, фармацевтические компании и биотехнологические стартапы, которые могут сократить время моделирования и тестирования лекарств, повысить точность прогнозирования побочных эффектов лекарственных средств и взаимодействия лекарственных препаратов за счет использования квантовых вычислений, ускорить анализ больших данных и оптимизировать протоколы клинических исследований.
В статье рассматривается процесс разработки и утверждения первого в Российской Федерации Кодекса этики применения искусственного интеллекта (ИИ) в сфере охраны здоровья. На фоне активного внедрения ИИ-технологий в медицинскую практику (зарегистрировано 39 соответствующих медицинских изделий) акцент сделан на важности формирования этических норм, обеспечивающих защиту прав пациентов, повышение доверия к технологиям и стандартизацию процессов. Проведен анализ международных подходов к этике ИИ в здравоохранении (ЕС, США, Великобритания, Канада, Австралия, Китай, Индия), и обозначена необходимость гармонизации отечественного кодекса с международными инициативами. Представлены этапы разработки документа, в которых приняли участие сотрудники профильных департаментов Минздрава России, главные внештатные специалисты и эксперты, а также структура и основные положения утвержденной версии Кодекса. Выделены ключевые принципы: прозрачность, конфиденциальность, справедливость, ограниченная автономность, контроль и ответственность. Финальная версия документа была опубликована в марте 2025 года на портале ЕГИСЗ после согласования с Межведомственной рабочей группой при Минздраве России. Кодекс призван стать фундаментом для устойчивого и безопасного внедрения ИИ в систему здравоохранения.
Большие генеративные модели (БГМ) обладают значительным потенциалом для здравоохранения и медицинской науки. Несмотря на экспоненциальный рост числа публикаций, качество и результативность научного изучения БГМ остается неудовлетворительной. В научной литературе утверждается необходимость создания стандартизированных подходов для обеспечения безопасной и эффективной интеграции БГМ в клиническую практику. В системе здравоохранения г. Москвы осуществляется апробация БГМ в качестве средства поддержки принятия врачебных решений, которая потребовала создания особых методов и инструментов для оценки их качества. Представлены две методики оценки качества БГМ, разработанные на основе: анализа литературных данных (всего свыше 200 источников); результатов проведенного авторами этапного комплексного тестирования 204 БГМ; эмпирического опыта оценки качества БГМ на выборке из более 12 000 случаев применения. Методики предназначены для двух основных сценариев применения моделей. В их основе лежат (с учетом сценария) принципы формирования тестовой выборки, специально разработанные и валидированные опросники, способы тестирования, унифицированные требования к составу и структуре результатов оценки качества.
Внедрение системы поддержки принятия врачебных решений (СППВР) в клиническую практику требует тщательного контроля для обеспечения безопасности пациентов и оценки эффективности применения технологий искусственного интеллекта.
Целью данной работы является оценка результативности СППВР «ТОП-3» в условиях консультативно-диагностических поликлиник Департамента здравоохранения города Москвы.
Материалы и методы: Мониторинг работы СППВР «ТОП-3» проводился Департаментом здравоохранения города Москвы с 01.10.2020 по 21.03.2024 (n = 63 809 360 чел.). Рассчитывалась метрика Hit-3, на основе которой принималось решение о необходимости повторного обучения представленной СППВР. Дополнительно было проведено исследование с участием врачей-экспертов: ретроспективный анализ данных на выборке из 3000 пациентов с расчетом согласованности диагнозов от СППВР, врача и эксперта.
Результаты: По результатам мониторинга среднее значение Hit-3 составляло 63,5, 64,5 и 67,7 для первой, второй и третьей версии СППВР соответственно. Экспертиза показала, что в выборке несоответствия диагноза от врача и СППВР (n = 2000) в 80,2% случаев эксперт на основе жалоб соглашался с СППВР, в 11,5% случаях - с врачом, а в 8,3% случаев ставил иной диагноз. В выборке соответствия диагноза врача с одним из диагнозов СППВР (n = 1000) в 50,4% случаев эксперт соглашался с диагнозом от врача и СППВР, в 37,9% случаев – с одним из двух других альтернативных диагнозов СППВР, в 11,7% случаев ставил иной диагноз.
Заключение: Описанная методика мониторинга, дополненная проведением экспертизы, позволила всесторонне оценить внедряемую в систему здравоохранения СППВР. По итогу оценки результативности «ТОП-3» было принято решение о необходимости расширения анализируемого перечня данных электронных медицинских карт, что будет внедрено в следующей версии СППВР «ТОП-3+».
Алгоритмы машинного обучения (МО) находят применение во всех сферах жизни человека. Пренатальный скрининг (ПС) не является исключением. Внедрение методов МО для оценки результатов ПС позволит преодолеть проблемы, присущие анализу людьми: снизить субъективность и вариабельность между разными специалистами при чтении медицинских изображений, сократить время исследования, стратифицировать беременных по группам риска с большей достоверностью. Настоящее исследование сконцентрировано на оценке диагностической результативности применения технологий, основанных на применении методов искусственного интеллекта (ИИ), для оценки результатов ПС. Исследование проводилось в соответствии с методологией обзора предметного поля. По результатам поиска в базах PubMed и eLibrary идентифицировано 27 релевантных работ. Все включенные работы продемонстрировали положительный потенциал методов ИИ для обнаружения, классификации или прогнозирования рисков развития врожденных аномалий (ВА). При интерпретации медицинских изображений МО позволяет сократить время диагностики, повысить ее качество, обеспечить возможность проведения данного варианта диагностики в удаленных и труднодоступных районах или в условиях кадрового дефицита, сохраняя при этом достаточную чувствительность и специфичность вне зависимости от квалификации врача. Алгоритмы на основе метаболомного анализа обладают преимуществами в точности и эффективности прогнозирования хромосомных аномалий. Системы поддержки принятия врачебных решений позволяют улучшить прогнозирование развития ВА в первом триместре беременности как с точки зрения точности скрининга, так и с точки зрения снижения стоимости программы скрининга.
Тем не менее текущие эмпирически подтверждённые знания в основном получены при внедрении систем ИИ с низкой автономностью действий, и авторы большинства включенных в анализ исследований описывают ряд ограничений, которые необходимо учитывать при внедрении подобных решений.