В работе рассматривается задача заполнения областей изображений. В последние годы эта область стремительно развивалась, новые нейросетевые методы показывают впечатляющие результаты, однако большинство нейросетевых подходов сильно зависят от разрешения, на котором их обучали. Незначительное увеличение разрешения приводит к серьезным артефактам и неудовлетворительному результату заполнения, из-за чего подобные методы не применимы в средствах интерактивной обработки изображений. В этой статье мы представляем метод, позволяющий решить проблему заполнения областей изображений разного разрешения. Мы также описываем способ более качественного восстановления текстурных фрагментов в заполняемой области. Для этого мы предлагаем использовать информацию из соседних пикселей путем сдвига исходного изображения в четырех направлениях. Предлагаемый подход применим к уже существующим методам без необходимости их переобучения.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.