Предлагается метод диагностирования линейных динамических систем, описываемых дискретными моделями при наличии внешних возмущений, на основе интервальных наблюдателей. Приводятся соотношения, позволяющие построить интервальный наблюдатель, формирующий два значения невязки так, что если число нуль находится между этими значениями, то дефекты, на обнаружение которых рассчитан наблюдатель, в системе отсутствуют. Случай, когда нуль не попадает между этими значениями, квалифицируется как появление дефекта. Теоретические результаты иллюстрируются примером.
Идентификаторы и классификаторы
Настоящая статья является развитием работ [1, 2], в которых рассматривалась задача построения интервальных наблюдателей для систем, описываемых линейными моделями, при наличии внешних возмущений. Эта задача активно исследуется последние годы, обстоятельные обзоры полученных за это время результатов содержатся в [3, 4], решения для различных классов систем, а также практические приложения можно найти в [5–10]. Характерной особенностью этих работ является то, что в них, как правило, интервальный наблюдатель имеет размерность, совпадающую с размерностью исходной системы, и определяется оценка множества допустимых значений полного вектора состояния, в то время как теоретический и практический интерес может представлять интервальная оценка только для значений заданной линейной функции этого вектора. Решающий эту задачу интервальный наблюдатель может оказаться существенно проще наблюдателя для полного вектора состояния, а ширина интервала заметно меньше.
Список литературы
1. Жирабок А.Н., Зуев А.В., Ким Чхун Ир. Метод построения интервальных наблюдателей для стационарных линейных систем // Известия РАН. Теория и системы управления. 2022. № 4. С. 22-32. EDN: EKPYZK
2. Жирабок А.Н., Зуев А.В., Филаретов В.Ф., Шумский А.Е., Ким Чхун Ир. Каноническая форма Жордана в задачах диагностирования и оценивания // АиТ. 2022. № 9. С. 49-67. EDN: AILGQC
3. Ефимов Д.В., Раисси Т. Построение интервальных наблюдателей для динамических систем с неопределенностями // АиТ. 2016. № 2. С. 5-49. EDN: VWWUIB
4. Khan A., Xie W., Zhang L., Liu L. Design and applications of interval observers for uncertain dynamical systems // IET Circuits Devices Syst. 2020. V. 14. P. 721-740. EDN: KLIAUP
5. Кремлев А.С., Чеботарев С.Г. Синтез интервального наблюдателя для линейной системы с переменными параметрами // Изв. вузов. Приборостроение. 2013. Т. 56. № 4. C. 42-46. EDN: PYBEQJ
6. Efimov D., Raissi T., Perruquetti W., Zolghadri A. Estimation and control of discrete-time LPV systems using interval observers // 52nd IEEE Conf. On Decision and Control. Florence, Italy. 2013. P. 5036-5041. EDN: UERCPV
7. Chebotarev S., Efimov D., Raissi T., Zolghadri A. Interval observers for continuoustime LPV systems with L1/L2 performance // Automatica. 2015. V. 51. P. 82-89. EDN: UGHVAZ
8. Mazenc F., Bernard O. Asymptotically stable interval observers for planar systems with complex poles // IEEE Trans. Automatic Control. 2010. V. 55. No. 2. P. 523-527.
9. Zheng G., Efimov D., Perruquetti W. Interval state estimation for uncertain nonlinear systems // IFAC Nolcos 2013. Toulouse, France, 2013. EDN: SKWEPF
10. Zhang K., Jiang B., Yan X., Edwards C. Interval sliding mode based fault accommodation for non-minimal phase LPV systems with online control application // Int. J. Control. 2019. DOI: 10.1080/00207179.2019.1687932 EDN: PKVXRP
11. Kolesov N., Gruzlikov A., Lukoyanov E. Using fuzzy interacting observers for fault diagnosis in systems with parametric uncertainty // Proc. XII-th Inter. Symp. Intelligent Systems, INTELS’16, 5-7 October 2016, Moscow, Russia. P. 499-504. EDN: YVGHLZ
12. Zhang Z., Yang G. Fault detection for discretetime LPV systems using interval observers // Int. J. Syst. Sci. 2017. DOI: 10.1080/00207721.2017.1363926
13. Zhang Z., Yang G. Event-triggered fault detection for a class of discrete-time linear systems using interval observers // ISA Transactions. 2017. DOI: 10.1016/j.isatra.2016.11.016 EDN: YXIEKP
14. Zhang Z., Yang G. Interval observer-based fault isolation for discrete-time fuzzy interconnected systems with unknown interconnections // IEEE Trans. Cybernetics. 2017. DOI: 10.1109/TCYB.2017.2707462 EDN: YFQJDT
15. Yi Z., Xie W., Khan A., Xu B. Fault detection and diagnosis for a class of linear time-varying discrete-time uncertain systems using interval observers // Proc. 39th Chinese Control Conf., July 27-29, 2020, Shenyang, China. P. 4124-4128.
16. Rotondo D., Fernandez-Cantia R., Tornil-Sina S., Blesa J., Puig V. Robust fault diagnosis of proton exchange membrane fuel cells using a Takagi-Sugeno interval observer approach // Int. J. Hydrogen Energy. 2015. P. 2875-2886.
17. Saijai J., Ding S., Abdo A., Shen B., Damlakhi W. Threshold computation for fault detection in linear discrete-time Markov jump systems // Int. J. Adapt. Control Signal Process. 2014. Vol. 28. P. 1106-1127.
18. Шумский А.Е., Жирабок А.Н. Принятие решений при диагностировании нелинейных динамических систем непараметрическим методом // АиТ. 2021. № 2. С. 111-131. EDN: MGTGAT
19. Жирабок А.Н., Шумский А.Е., Соляник С.П., Суворов А.Ю. Метод построения нелинейных робастных диагностических наблюдателей // АиТ. 2017. № 9. С. 34-48. EDN: ZDMTSH
20. Low X., Willsky A., Verghese G. Optimally robust redundancy relations for failure detection in uncertain systems // Automatica. 1996. Vol. 22. P. 333-344.
Выпуск
Другие статьи выпуска
Показана актуальность создания интеллектуальных роботов различного назначения, способных эффективным образом решать сложные многоэтапные задачи целенаправленной деятельности в априори неописанных проблемных средах. Предложены оригинальные по содержанию элементы продукционной модели представления знаний безотносительно к конкретной предметной области. Построенная таким образом модель представления знаний позволяет интеллектуальным роботам автоматически планировать целенаправленную деятельность в условиях неопределенности, опираясь на обобщенное описание возможных закономерностей проблемной среды. Разработаны процедуры автоматического синтеза графа “видимости”, определяющего формальным образом воспринимаемый интеллектуальным роботом участок проблемной среды. Это, в свою очередь, позволяет роботу автоматически формировать локально-оптимальный маршрут целенаправленного перемещения в априори неописанных условиях функционирования. Синтезированы процедуры автоматического планирования интеллектуальным роботом целенаправленной деятельности, связанной с преобразованием текущей ситуации проблемной среды в заданную целевую ситуацию в условиях неопределенности.
Рассматривается множество обратимых механических систем с колебаниями одного периода и индивидуальными фазовыми сдвигами в них. Решается задача агрегирования связанной системы с притягивающим циклом. Развивается подход с выбором ведущей (управляющей) системы, которая через односторонную связь-управление действует на остальные (ведомые) системы: в агрегированной системе непосредственные связи между ведомыми системами отсутствуют. Применяются универсальные связи-управления. Особое внимание уделяется консервативным системам. Даются возможные сценарии функционирования агрегированной системы.
Анализируется механизм смешанного финансирования мегапроекта, состоящего из нескольких проектов. Одна часть средств на выполнение проекта поступает от руководителя мегапроекта, другая часть от исполнителя проекта. При распределении средств на выполнение проектов руководитель мегапроекта учитывает информацию о размере собственных средств исполнителя на выполнение проекта. Исполнители проектов стремятся получить больше средств от руководителя мегапроекта, в свою очередь, руководитель мегапроекта заинтересован в привлечении большего размера средств от исполнителей проекта. Для достижения этой цели руководитель мегапроекта использует различные процедуры распределения финансовых средств. Соответственно, исполнители проекта для увеличения выделяемых для них средств используют информацию, сообщаемую руководителю мегапроекта. Анализируются процедуры прямых и обратных приоритетов распределения в механизме смешанного финансирования. В ситуации равновесия по Нэшу определяется процедура распределения финансовых средств, которая стимулирует исполнителей проекта выделять больший объем собственных средств на выполнение проекта.
Рассматривается задача стимулирования сокращения продолжительности проекта. Заданы величины сокращения продолжительностей работ проекта и соответствующие затраты. Для компенсации затрат применяется система группового стимулирования. В этой системе все работы разбиваются на группы и для каждой группы применяется унифицированная система стимулирования. Рассмотрены два типа унифицированных систем для групп - линейная и скачкообразная. Задача заключается в разбиении работ на группы и в выборе системы стимулирования для каждой группы так, чтобы суммарный фонд стимулирования был минимален. Предложены алгоритмы решения, в основе которых лежит определение кратчайшего пути в сети. Рассмотрен также ряд частных случаев (разбиение с минимальным числом групп и разбиение с максимальным числом групп).
Рассматриваются задачи построения расписаний работ для предприятий со стапельной сборкой изделий. В состав таких предприятий может входить несколько производственных подразделений, в которых изготавливаются комплектующие, предназначенные для сборки из них на стапелях выпускаемых изделий. Для решения рассматриваемых задач предлагаются методы, позволяющие строить согласованные расписания работ для всех производственных подразделений предприятия.
Рассматриваются задачи управления многономенклатурными запасами в иерархических системах складов при постоянном спросе в условиях ограниченной вместимости складов. Снабжение системы складов может производиться несколькими поставщиками. Для решения этих задач предлагаются модели и методы, позволяющие в соответствии с имеющимся спросом определять время и величину пополнения всех складов, находящихся на различных уровнях такой системы складов.
Разработаны модели и методы проверки достижимости комплекса целей и выполнимости планов мероприятий, осуществляемых при управлении крупномасштабными системами. Сформирован алгоритм анализа достижимости целей и планов, реализуемых в процессе развития этих систем. Приведен пример, иллюстрирующий основные этапы проверки достижимости комплекса целей и выполнимости планов мероприятий при ликвидации последствий наводнения.
Изучается влияние расположения аминокислотных остатков в пентапептиде на его устойчивость. Cтроится прогноз устойчивости пентапептида с помощью метода градиентного бустинга, позволяющего оценить влияние каждого признака на стабильность пентапептида. Выявлены комбинации расположения аминокислот в пентапептиде, вносящие существенный вклад в его стабильность. Показано, что использование таких комбинаций позволяет сократить количество данных, необходимых для получения достоверного прогноза стабильности пентапептида.
Для линейных многосвязных непрерывных стационарных устойчивых систем с простым спектром, в том числе в канонической диагональной форме, а также приведенных к каноническим формам управляемости и наблюдаемости, разработан метод и получены аналитические формулы спектральных разложений грамианов в форме различных матриц Сяо. Разработан метод и алгоритм вычисления обобщенных матриц Сяо в виде произведения Адамара для многосвязных непрерывных линейных систем со многими входами и многими выходами. Это позволяет вычислять элементы соответствующих грамианов управляемости и наблюдаемости в виде произведений соответствующих элементов матриц мультипликаторов и матрицы, являющейся суммой всевозможных произведений матриц числителя матричной передаточной функции системы. Новые результаты получены в виде спектральных и сингулярных разложений обратных грамианов управляемости и наблюдаемости. Это позволяет получить инвариантные разложения энергетических функционалов и сформулировать новые критерии устойчивости линейных систем с учетом нелинейных эффектов взаимодействия мод.
Решается задача разработки и моделирования алгоритма адаптивного управления неустойчивым вертикальным положением плазмы в вертикально вытянутом токамаке, где на каждой итерации для изменяющейся модели плазмы, идентифицированной методом наименьших квадратов (МНК), автоматически синтезировался новый ПИД-регулятор. Параметры регулятора в обратной связи вычислялись посредством заданного расположения полюсов замкнутой системы управления в левой полуплоскости комплексной плоскости. В качестве начальной модели системы управления использовалась робастная система, синтезированная с помощью теории количественной обратной связи (Quantitative Feedback Theory - QFT). Система была промоделирована на цифровом стенде реального времени (https://www. ipu. ru/plasma/about).
В этом специальном выпуске представлены избранные доклады 15-й Международной конференции “Управление развитием крупномасштабных систем (MLSD 2022)”, состоявшейся 26–28 сентября 2022 г.
Издательство
- Издательство
- ИППИ РАН
- Регион
- Россия, Москва
- Почтовый адрес
- Большой Каретный пер., 19, стр. 1
- Юр. адрес
- Большой Каретный пер., 19, стр. 1
- ФИО
- Соболевский Андрей Николаевич (Директор)
- E-mail адрес
- director@iitp.ru
- Контактный телефон
- +7 (495) 6504274
- Сайт
- http:/iitp.ru