SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Исследуется нелинейное интегральное уравнение на полуоси со специальным субстохастическим ядром. Такие уравнения встречаются в кинетической теории газов при изучении нелинейного интегро-дифференциального уравнения Больцмана в рамках нелинейной модифицированной модели Бхатнагара - Гросса - Крука (БГК). При определенных ограничениях на нелинейность удается построить положительное непрерывное и ограниченное решение данного уравнения. Более того, доказывается единственность решения в классе ограниченных сверху на полуоси функций, имеющих положительный инфимум. Доказывается также, что соответствующие последовательные приближения равномерно со скоростью некоторой убывающей геометрической прогрессии сходятся к решению указанного уравнения. При одном дополнительном условии исследуется асимптотическое поведение решения на бесконечности. Приводятся конкретные примеры указанных уравнений, для которых автоматически выполняются все условия доказанных фактов.
Проект создания цифровой платформы Algo500 направлен на решение задачи совместного анализа свойств алгоритмов и особенностей архитектур суперкомпьютеров. В статье на основе методологии онтологического анализа рассматриваются и предлагаются понятия, модели и метамодели данных, обосновываются подходы к описанию некоторых понятий из мира высокопроизводительных вычислений (HPC), устанавливаются новые требования к моделям данных, которые должны обеспечить выполнение задач, поставленных при создании платформы Algo500.
Ранее в наших работах было предложено в задачах веерной томографии применять методы перевода пучка веерных лучей в набор параллельных лучей. Это достигалось специальной деформацией искомой томограммы на этапе обратного проецирования измеренных и отфильтрованных проекций, с последующей операцией обратной деформации. Деформация томограммы для каждого направления наблюдения будет своя, но взаимно-однозначный характер этих деформаций позволяет вернуться к исходной системе координат. В данной работе этот метод обобщен на семейство плоских криволинейных траекторий, позволяющих взаимно-однозначные переходы к параллельным лучам. Для каждой обратной проекции изображение оказывается промодулировано известной функцией, следующей из уравнения дифференциала пути заданной траектории. Результаты обобщения широко распространенного в методах двумерной томографии алгоритма FBP демонстрируются на примерах параболической, синусоидальной и веерной траекторий лучей.