SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Введение. Современные художники все чаще прибегают к новым способам создания произведений искусства – происходит постоянное внедрение нейросетевых программ и новых методик, что приводит к качественно новым результатам и новому художественному мышлению. В данном случае особо интересен опыт Китая, где на законодательном уровне внедряются разработки искусственного интеллекта в создание художественных работ. Теоретический анализ. Существуют несколько концепций, рассматривающих творчество и авторство в эпоху искусственного интеллекта. Исследователи сходятся на мнении, что сейчас мы находимся в эпохе соавторства с нейросетями, так как они могут привносить новые элементы в изначальный замысел художника. Китайские авторы активно используют ChatGPT, Midjourney и другие нейросети для разработки и усовершенствования своих идей.
Заключение. Методология применения нейросетей обогащает творчество современных художников, но одновременно может стать угрозой для когнитивных способностей будущих авторов.
Предложен метод определения места судна по глубинам на основе нейронной сети, которая принимает на вход последовательность глубин, измеренных при помощи эхолота, а прогнозирует широту и долготу судна на момент измерения последней глубины. Нейронная сеть имеет архитектуру сети прямого распространения с несколькими скрытыми слоями и полными связями, удовлетворяющую условиям универсальной аппроксимации в соответствии с теоремой Стоуна - Вейерштрасса. Для обучения используется алгоритм Adamax при условии контроля наибольшего значения модуля невязки на каждой итерации. Моделирование выполнялось с использованием языка программирования Python и библиотеки Tensorflow. Модельная поверхность рельефа дна была представлена в виде многочлена второго порядка. Образцы получены на основе виртуальных измерений глубин в узлах координатной сетки с пространственным разрешением не хуже, чем один кабельтов. После сбора образцов выполнялось обучение нейронной сети, в ходе которого не использовалась контрольная выборка. В обучении участвовало несколько нейронных сетей, отличающихся количеством скрытых слоев, а также количеством нейронов в них. После обучения было проведено тестирование, которое предполагало движение судна вдоль меридианов, в точности не совпадающих с используемыми для формирования обучающей выборки. При этом наряду с вариантом средних по долготе меридианов рассмотрен вариант выбора меридианов с использованием датчика случайных чисел равномерного распределения. В результате тестирования все рассмотренные сети показали примерно одинаковую приемлемую навигационную точность, близкую к точности, полученной на обучающей выборке.
Предложен метод определения широты места судна по глубине на основе нейронной сети, которая принимает на вход последовательность глубин, измеренных при помощи однолучевого эхолота и прогнозирует широту на момент измерения последней глубины. Сеть имеет два слоя. Первый слой содержит нейроны с функциями активации в виде гиперболического тангенса, второй состоит из одного нейрона, обладающего тождественной функцией активации. Набор учебных данных состоит из обучающей и контрольной выборок. Обучающая выборка формируется на основе слоя глубин, содержащегося в электронной навигационной карте. Контрольная выборка формируется путем псевдослучайных вариаций входных образцов из обучающей выборки. Каждая такая вариация соответствует постоянному изменению уровня моря вследствие ошибок измерений и/или колебаний ветрового и/или приливоотливного характера. Обучается сеть методом Adamax. Критерием эффективности обучения служит наибольшее значение модуля ошибки прогноза широты, определенное для образцов из контрольной выборки. После обучения сеть проходит тестирование на образцах, полученных аналогичным образом, как для контрольной выборки. Моделирование выполнено с использованием языка программирования Python. Для обучения и реализации работы нейронной сети используется библиотека TensorFlow. Моделирование выполнено для нескольких вариантов архитектуры сети, каждый из которых отличается количеством нейронов в скрытом слое. В результате было зафиксировано, что нейронные сети имеют тенденцию к обучению их прогнозированию широты места судна по последовательности глубин, что позволяет рассматривать их в качестве перспективного инструмента для решения задач батиметрической навигации.
Представленная разработка способствует внедрению цифровых технологий в описание процессов нефтехимических предприятий, отвечает потребностям промышленности в быстрых и точных расчетах, сокращает зависимость от дорогостоящих экспериментов и зарубежного программного обеспечения, что делает его актуальным как для науки, так и для реального сектора экономики. Целью исследования является способ расчета вязкости широкой фракции углеводородов с использованием нейронных сетей для повышения точности и эффективности прогнозирования по сравнению с традиционными методами и реализация в виде специализированного программного комплекса. Для оптимизации процесса обучения и ускорения вычислений исходная задача была разделена на несколько более простых подзадач с уменьшенной размерностью параметров, предложенная декомпозиция значительно сократила объем вычислений, что способствует снижению параметричности построенного многослойного полносвязного персептрона и понижению проблематичности процедуры обучения моделей. Для автоматизации сбора информации для обучения многослойного полносвязного персептрона был разработан вспомогательный программный комплекс, формирующий требуемые наборы данных в Unisim. Все построенные нейронные сети обучались на выборках, которые разбивались на обучающее, валидационное и тестовое подмножества по 70, 15 и 15 % от исходного набора соответственно. Потери при обучении не превысили 10-6 при отсутствии переобучения. Работоспособность полученного многослойного полносвязного персептрона дополнительно проверили на производственных данных, не использовавшихся при обучении. Реализация метода осуществлена в виде оригинального специализированного программного комплекса, в котором используется согласованная работа нескольких обученных нейронных сетей для точного расчета вязкости углеводородных смесей. Разработанный программный комплекс доказал свою эффективность и надежность, представляя собой мощный инструмент для расчета вязкости широкой фракции углеводородов при моделировании процессов нефтехимии.
Статья посвящена сравнению современных алгоритмов искусственных нейронных сетей, используемых для генерации 3D-моделей. Актуальность темы обусловлена растущим спросом на автоматизацию технологий создания 3D-моделей в различных областях, включающих игровую индустрию, дизайн, киноискусство, медицину. Целью работы является рассмотрение алгоритмов искусственных нейронных сетей для генерации трехмерных моделей с последующим акцентированием их преимуществ и недостатков, а также определение направлений для их возможного применения. В статье рассматриваются основные категории алгоритмов, включая воксельные подходы, методы, основанные на облаках точек, полигональные сетки, а также неявные поверхности. Особое внимание уделяется генеративно-состязательным сетям и нейронным полям излучения, которые демонстрируют высокое качество генерации и широкие возможности применения. Для каждого подхода описаны принципы работы, преимущества, ограничения и примеры использования. Методы исследования включают анализ научной литературы, сравнение подходов, используемых при генерации искусственными нейронными сетями, а также оценку качества генерации на основе публичных датасетов. Также рассматриваются вычислительные затраты, требования к данным и сложность реализации каждого алгоритма. Статья подчеркивает важность дальнейших исследований в этой области, включая разработку гибридных методов и улучшение существующих подходов.
На основе континуальной модели высокоскоростного соударения пластин построен набор обучающих данных, по которым искусственная нейронная сеть обучена определять профиль скорости тыльной поверхности пластины-мишени исходя из параметров удара и параметров модели материала. Обученная нейронная сеть была использована в качестве быстрого эмулятора процесса высокоскоростного соударения пластин. Применение байесовского подхода калибровки модели позволило решить обратную задачу определения параметров модели материала по профилю скорости тыльной поверхности.
В работе выполнен анализ классического метода градиентного спуска и предложен способ динамического изменения шага обучения на основе вычисляемых параметров τ и p. Основной акцент сделан на алгоритме, который позволяет вычислять оптимальные значения параметров τ и p для минимизации времени обучения. Эксперименты демонстрируют, как изменения этих параметров влияют на скорость обучения для различных топологий нейронных сетей и функций активации. Результаты моделирования показывают, что правильный выбор τ и p может значительно сократить временные затраты при обучении нейронных сетей с фиксированной структурой. Использование этих параметров позволяет улучшить процесс обучения, предотвращая застревание в локальных минимумах и обеспечивая баланс между скоростью обучения и точностью результата. Исследования продемонстрировали эффективность адаптивного подхода при различных топологиях нейронных сетей и функциях активации. Представленные графики и численные расчёты показывают зависимость средней скорости обучения от выбранных параметров.
На основе базы данных, полученной с помощью модели высокоскоростного соударения пластин, связывающей параметры удара и параметры модели материала с профилем скорости тыльной поверхности, проведено сравнение процесса обучения и точности искусственной нейронной сети прямого распространения и рекурсивной нейронной сети. Рекурсивная нейронная сеть обеспечивает б´ольшую точность и требует меньшего времени для обучения. Использование рекурсивной нейронной сети в качестве быстрого эмулятора модели и байесовская калибровка могут позволить решить обратную задачу определения параметров модели вещества по профилю скорости тыльной поверхности с большей точностью.
В статье разрабатывается комплексный подход к прогнозированию транспортной загруженности с использованием синтетических данных, имитирующих динамику городского трафика. Гибридная методология позволяет объединить анализ временных рядов и глубокое обучение, что актуально для моделирования нелинейных зависимостей и закономерностей в транспортных данных.
Цель. Целью работы является разработка и тестирование прогностической модели, способной точно предсказывать уровни транспортной загруженности с учётом сезонных и погодных факторов.
Материалы и методы. Для выявления паттернов в данных применено аддитивное разложение временного ряда, спектральный анализ на основе быстрого преобразования Фурье и оценка автокорреляционных зависимостей. Прогностическая модель реализована в виде двухэтапного подхода: классический алгоритм ARIMA используется для базового прогнозирования, а архитектура LSTM с двумя рекуррентными слоями и регуляризацией – для обучения на последовательностях длиной 24 часа. Дополнительно для сопоставления и подтверждения результатов применён ансамблевый метод Random Forest, настроенный с гиперпараметрами: 200 деревьев, максимальная глубина – 12, минимальное количество объектов в листе – 2.
Результаты. Результаты демонстрируют превосходство LSTM-модели над ARIMA и Random Forest по точности предсказаний, что подтверждается визуальным сопоставлением прогнозов с тестовыми данными и метрикой среднеквадратичной ошибки. Выявлены ключевые факторы, влияющие на загруженность: суточные циклы интенсивности трафика, рост нагрузки при осадках (до 30% при снеге и 20% при дожде), а также температурно-зависимая модуляция транспортного потока.
Семантическая сегментация - операция в компьютерном зрении, заключающаяся в классификации и попиксельной локализации объектов на цифровом изображении. Данная статья содержит в себе обзор существующих модификаций классической архитектуры сверточной нейронной сети, направленных на решение проблемы искажения информации с исходного изображения. Проведено сравнение эффективности рассмотренных моделей в условиях бинарной и множественной семантической сегментации. Статья может быть полезной для ML/DL-разработчиков, желающих изучить проблематику сегментации изображений в рамках своей предметной области.