SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В основе книги лежит концепция байесовского использования априорной информации в сочетании с накапливаемыми результатами наблюдений для выработки рациональных решений. Изложенные математические методы используются далее в задачах оценивания долей, средних дисперсий и регрессионных моделей. Кратко рассматриваются системы управлений.
Для статистиков, экономистов и других специалистов, интересующихся эконометрией и статистикой.
В учебнике представлены основные методологические подходы, сложившиеся в теории выбора и принятия решений как научной дисциплине; рассмотрен понятийный аппарат теории принятия решений; приведены наиболее важные методы оптимального и рационального индивидуального выбора, коллективного принятия решений. Особое внимание уделено современным методам многокритериального выбора. Большое число примеров, близких к практическим задачам принятия решения, поясняют теоретические положения.
Для студентов высших учебных заведений. Может быть полезен аспирантам университетов и вузов, а также преподавателям и научным работникам.
Профессор Иэн Стюарт в увлекательной манере и с юмором рассказывает о том, как развивалась математика – с древнейших времен и до наших дней. Он рассматривает наиболее значимые темы и события, обращая особое внимание на их прикладной характер.
Вы познакомитесь с виднейшими математиками своих эпох, а также узнаете, как то или иное математическое открытие повлияло на нас и нашу историю.
Эта книга для математиков и всех, кто интересуется историей математики и науки вообще.
На русском языке публикуется впервые.
Данная книга обращена прежде всего к тем, кто изучает математику, — начиная от учащихся старших классов и студентов и кончая специалистами в различных областях, которым приходится встречаться с применением математических методов исследования. Читатель узнает, какими путями добываются новые факты в математике, с какой степенью доверия следует относиться к той или иной математической гипотезе — одним словом, перед ним раскрывается подлинный процесс математического творчества. (Автор особенно подчеркивает общность путей открытия истин для всех естественных наук.)
Благодаря этому книга является также незаменимым пособием для преподавателей математики всех ступеней. Увлекательность изложения, обилие исторических иллюстраций, а также предпринятая автором попытка построения теории правдоподобных (индуктивных) умозаключений делают книгу интересной и для профессионала-математика.
Пособие содержит основные понятия теории множеств, логики, теории графов в иллюстрациях и поясняющих примерах, адаптированных под потребности менеджмента и управления Может быть использовано как развернутый справочник для менеджера по современным формализованным представлениям.
Для студентов вузов, обучающихся по экономическим и управленческим специальностям и направлениям Представляет интерес для преподавателей и аспирантов, менеджеров-аналитиков, управленческих консультантов и пользователей компьютерных технологий в менеджменте.
Книга отражает современное развитие теоретико-групповых методов применительно к задачам математической физики. Она включает теорию инвариантов групп преобразований в римановых пространствах и групповой анализ уравнений Эйнштейна.
Изучаются алгебро-геометрические аспекты принципа Гюйгенса и законов сохранения. Излагаются основы теорииформальных групп преобразований Ли—Беклунда, инвариантныхдифференциальных многообразий и проводится групповая классификациянелинейных дифференциальных уравнений.
Рассчитана на математиков, физиков и механиков, интересующихся вопросами качественного анализа дифференциальных уравнений.
Четвертый том известной монографии, посвященный важному для теоретической физики спектральному анализу операторов. Изложение отличается от традиционных руководств физической направленностью в отборе материалов и примеров при сохранении математической строгости.
Для всех кто занимается функциональным анализом и его приложениями в физике.
Излагается обычная для уравнений математической физики тематика: распространение волн, теплопроводность, вопросы разрешимости, корректности. Акцент делается на линейных уравнениях с частными производными, но рассматриваются и нелинейные процессы. Определенное внимание уделяется нестандартным для рассматриваемой области направлениям. В первую очередь это теоретико-групповые методы изучения уравнений с частными производными, автомодельные решения и другие плоды исследования свойств симметрии. Несколько особняком стоит разъяснение теории дифференциальных форм, от которых не зависит остальное содержание. Но сама эта теория тесно примыкает к уравнениям математической физики и нуждается в простом и ясном описании. Изложение отличается краткостью и прозрачностью.
Для студентов, преподавателей, инженеров и научных работников.
Книга представляет собой самостоятельную часть курса математической физики, примыкающую к книге «Элементы прикладной математики» тех же авторов, но не зависимую от нее.
Основной особенностью является концентрация изложения вокруг физических задач, вывод математических методов из физической сущности задачи, возможно более полное прослеживание аналогий между математикой и физикой, отыскание физического смысла в математическом решении. Специальное внимание уделяется кинетическому уравнению, уравнению диффузии, законам сохранения, разрывам.
Книга предназначена студентам физических и других специальностей, для которых курс физики имеет определяющее значение, а также всем желающим познакомиться с физической сущностью методов математической физики.
Книга Куранта-Гильберта еще до своего появления на русском языке приобрела заслуженную популярность среди советских математиков и физиков.
Меньше всего она претендует на роль учебника: столь многообразный материал (линейная и квадратическая алгебра, теория интегральных уравнений, линейные дифференциальные уравнения, обыкновенные и в частных производных, основы вариационного исчисления, теория разложения, функциональные ряды и теория специальных классов функций) не может, при сохранении стиля учебника, уместиться в рамках одной книги.