SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В работе приведена характеристика основных месторождений полезных ископаемых: горючих, металлических, неметаллических, строительных материалов, подземных вод пресных, минеральных и термальных с учетом их бальнеологического значения.
Дана характеристика месторождений Крыма с приложением кондиционных запасов по отдельным пунктам. Показаны перспективы развития и освоения описанных месторождений и дальнейшее их развитие.
В результате открытия газовых месторождений (Джанкойское, Стрелковое, Глебовское и др.) ряд населенных пунктов и промышленных предприятий. Крымской области - получили природный газ. Дальнейшие перспективы развития газовой промышленности юга УССР связываются с северо-западной частью Черного моря и Азовским морем. Открытие Северо-Сивашского месторождения йодо-бромных вод расширяет промышленные потенциалы Крыма.
Приведенные сведения по минеральным богатствам Крымского полуострова могут использовать научные исследователи, геологи производственных организаций, а также студенты и другие лица, проявляющие интерес к освоению сокровищ недр Крыма.
В цикле «Богат минералами край Самарский» (1998) впервые была собрана воедино информация, о почти сорока минеральных разновидностях нашего края. Забытая на века красота волжских агатов и кремней была справедливо реабилитирована в очерке «Волжские агаты» (2002). Разнообразие видов и форм местных окаменелых деревьев было впервые наглядно продемонстрировано в ряде работ и, в частности, в заметке «Весьма дивное – окаменелое дерево» (2003). Завораживающе были представлены, недавно открытые геологами, уникальные, горелые породы (публикация «Огонь из прошлого»(2002)). Заслуживают внимание статьи о перспективах развития минерально-сырьевой базы Самарской области (2000), истории добычи медных руд в Среднем Поволжье (2003), новые предложения по инвентаризации геологических памятников региона (2001), другие публикации.
В книге рассмотрены природные физико-химические и геологические условия формирования в недрах и на поверхности Земли важнейших полезных ископаемых. Приведена характеристика трех серий месторождений — эндогенной, экзогенной и метаморфогенной, разделенных на ряд групп, которые в свою очередь расчленены на генетические классы; описаны общие условия возникновения месторождений полезных ископаемых в процессе развития земной коры как в геосинклиналях, так и на платформах, а также геологические закономерности их размещения в региональных и локальных тектонических структурах.
Книга основана на новейших достижениях в области геологии, геохимии, экспериментальных и расчетных физикохимических данных, относящихся к генезису месторождений полезных ископаемых.
В современных теоретических схемах математической физики большое значение имеют теория функций вещественного переменного, различные функциональные пространства и общая теория операторов. Этим вопросам в основном и посвящена настоящая книга, которая написана на основе пятого тома моего „Курса высшей математики“, вышедшего в 1947 году.
Содержанием теории функций вещественного переменного в настоящей книге является теория классического интеграла Стилтьеса, интеграла Лебега—Стилтьеса и теория вполне аддитивных функций множеств.
В первой главе изложена теория классического интеграла Стилтьеса, а также рассмотрено более общее определение интеграла Стилтьеса по промежутку любого типа, основанное на совпадении соответствующих верхнего и нижнего интегралов Дарбу при разбиении основного промежутка на промежутки любого типа.
В качестве примеров классического интеграла Стилтьеса рассматриваются интегралы Фурье—Стилтьеса и Коши—Стилтьеса. Для них устанавливаются формулы обращения. Интеграл Стилтьеса определяется и для случая плоскости.
В предисловии ко второму изданию пятого тома (1959 г.) Владимир Иванович Смирнов писал, что «предполагается выпуск шестого тома с изложением некоторых вопросов современной теории дифференциальных операторов с одной и несколькими независимыми переменными». Он хотел, чтобы я была соавтором этого нового тома. Однако разные дела и обстоятельства помешали осуществлению этого намерения, и было решено ограничиться расширением четвертого тома. Для этого во второй том была включена теория интеграла Лебега и пространство L₂, а четвертый том был разбит на две части (книги).
В первой из них изложена теория интегральных уравнений в пространстве непрерывных функций и в пространстве L₂, вариационное исчисление, теория обобщенных производных, основные свойства пространств W₁² и W₂² и задача о минимуме квадратичного функционала в обобщенной постановке. Эта часть вышла в свет в 1974 году. Переработка и расширение второй части четвертого тома пришлась на время, когда здоровье Владимира Ивановича было подорвано тяжелой болезнью.
Тем не менее он нашел в себе силы внимательно прочесть и отредактировать написанное мною дополнение и изменения и высказал пожелания относительно окончательной редакции данной книги. У Владимира Ивановича было намерение исключить часть материала предыдущего издания, которая ему казалась несколько устаревшей в свете последующих исследований. Но в результате совместного обсуждения он согласился сохранить его и внести лишь небольшие корректировки, необходимые для увязания старого и нового текстов.
В настоящее издание внесены следующие добавления и изменения: в главе I указаны результаты, касающиеся формулы Коши и интегралов типа Коши с использованием интегралов Лебега; в главе III изменено изложение приближенного вычисления интегралов по методу скорейшего спуска и добавлено изложение метода стационарной фазы; в главе IV расширено изложение теории аналитических функций одной матрицы.
Наибольшие изменения внесены в главу V. В частности, добавлена краткая теория функций Эйри, рассмотрена асимптотика решения одного линейного уравнения второго порядка, содержащего большой параметр, и расширено изложение теории одного дифференциального уравнения второго порядка с периодическим коэффициентом. В главе VI изменено изложение асимптотик функций Ханкеля и Бесселя при большом значке и аргументе.
Большую помощь при изложении указанных вопросов оказали мне В. М. Бабич, Б. С. Будильер и В. А. Якубович. Приношу им мою глубокую благодарность. Без их помощи я не мог бы выполнить большой работы по подготовке настоящего издания тома III.
Настоящее шестое издание четвертого тома существенно отличается от пятого издания. Это связано с тем, что четвертый том впервые печатается после изменения второго тома, в котором изложена теория интеграла Лебега и класс L₂ функций, интегрируемых с квадратом по Лебегу. Это повлекло изменение изложения первой главы IV тома — теории интегральных уравнений. Кроме того, добавлена третья глава, содержащая изложение новых точек зрения на некоторые основные понятия математического анализа. Вторая глава (вариационное исчисление) несколько расширена. В третьей главе уже с новых точек зрения рассмотрена задача о минимуме квадратичного функционала.
В предыдущем издании четвертый том содержал более 800 страниц. В настоящем издании его пришлось разбить на две части, и настоящая книга является первой его частью.
В заключение я приношу глубокую благодарность моим сотрудникам по университету М. Ш. Бирману, О. А. Ладыженской, М. З. Соломку и Н. Н. Уральцевой за большую помощь при составлении этой книги.
Общий план настоящего издания второго тома тот же, что и в предыдущем издании. Существенные изменения внесены в первые две главы, посвященные дифференциальным уравнениям. Уже в п. 2 первой формулируется теорема существования и единственности решения при начальном условии, и остальное изложение проводится в непосредственной связи с этой теоремой. Значительно расширено содержание §5 второй главы.
В §9 третьей главы после изложения теории меры Жордана и исследования интеграла Римана излагаются теория меры Лебега, свойства измеримых функций и интеграл Лебега. В связи с этим §15 шестой главы содержит изложение свойств класса L₂ и теорию ортонормированных систем функций этого класса. Первые три главы были прочтены С. М. Лозинским, от которого я получил ряд ценных указаний. Выражаю ему мою глубокую благодарность.
В настоящем издании, в связи с добавлением нового материала, третий том разбит на две части. Первая часть содержит весь материал, относящийся к линейной алгебре, теории квадратичных форм и теории групп. В этой части наиболее существенные добавления относятся к теории групп. Большую помощь при составлении этих добавлений мне оказал Д. К. Фаддеев.
Ему, в частности, принадлежит изложение материала, относящегося к выяснению простоты группы вращения и группы Лоренца, построение группы по структурным постоянным и интегрированию на группе 70, 81, 87, 88, 89, 90. Приношу ему большую благодарность за помощь в работе над этой книгой.
Настоящее издание весьма существенно отличается от предыдущего. Из книги исключен материал, относящийся к аналитической геометрии. В связи с этим пришлось сделать перегруппировку оставшегося материала. В частности, все имеющиеся в настоящем томе приложения дифференциального числения к геометрии собраны в §7 (глава II). Далее, в первый том отнесена глава, посвященная комплексным числам, основным свойствам целых многочленов и систематическому интегрированию функций. Прежде она была главой I второго тома. Не останавливаясь на мелких добавлениях и изменениях в изложении, мы укажем на существенные добавления.
Принимая во внимание, что в следующих томах приходится встречаться с довольно тонкими и сложными вопросами современного анализа, мы сочли полезным в конце §2 (глава I) после изложения теории пределов поместить изложение теории иррациональных чисел и её применений к доказательству признаков существования предела и свойств непрерывных функций. Там же мы приводим строгое определение и исследование свойств элементарных функций. В главе V, посвященной функциям нескольких переменных, мы приводим доказательство существования неявных функций.
Изложение ведется таким образом, что крупный шрифт может читаться самостоятельно. В мелкий шрифт отнесены примеры, некоторые отдельные дополнительные вопросы, а также весь теоретический материал, о котором мы упоминали выше, и последние три параграфа главы IV, также содержащие дополнительный теоретический материал более сложного характера.
Профессор Г. М. Фихтенгольц сделал мне ряд ценных указаний в отношении изложения, которыми я воспользовался при окончательной редакции этой книги. Считаю своим приятным долгом выразить ему мою глубокую благодарность.